WESIGUDATAE FOR MISSOURI STREAMS By John Skelton # FLOOD-VOLUME DESIGN DATA FOR MISSOURI STREAMS By John Skelton U. S. GEOLOGICAL SURVEY Anthony Homyk, District Chief PREPARED IN COOPERATION WITH MISSOURI GEOLOGICAL SURVEY AND WATER RESOURCES W. B. Howe, State Geologist & Director # MISSOURI GEOLOGICAL SURVEY AND WATER RESOURCES *Wallace B. Howe, Ph.D., State Geologist and Director Larry D. Fellows, Ph.D., Assistant State Geologist #### **ADMINISTRATION** Charlotte L. Sands, Administrative Secretary Edith E. Hensley, Accountant II Judi Seidinger, Clerk Typist II #### ANALYTICAL CHEMISTRY Mabel E. Phillips, B.S., Chemist #### AREAL GEOLOGY AND STRATIGRAPHY Thomas L. Thompson, Ph.D., Chief William Henry Allen, Jr., Ph.D., Geologist Ira R. Satterfield, M.S., Geologist Ronald A. Ward, M.S., Geologist #### **ENGINEERING GEOLOGY** *James H. Williams, M.A., Chief Edwin E. Lutzen, M.A., Geologist Thomas J. Dean, B.S., Geologist John W. Whitfield, B.A., Geologist Beverly A. Bramel, Stenographer III #### **GRAPHICS** Douglas R. Stark, Chief George C. Miller, Draftsman II Stephan W. Hardesty, Draftsman I Billy G. Ross, Draftsman I #### GROUND WATER Dale Fuller, B.S., Chief *Robert D. Knight, B.S., Geologist Don E. Miller, M.S., Geologist Ervin Happel, Clerk III D. Jean Hale, Stenographer II #### **MAINTENANCE** Everett Walker, Supt., Bldgs. & Grounds Wilbert P. Malone, Maintenance Man II Walter C. Bruss, Custodial Worker II Robert J. Fryer, Custodial Worker I #### MINERAL RESOURCES *James A. Martin, M.S., Chief Heyward M. Wharton, M.A., Geologist Charles E. Robertson, M.A., Geologist Eva B. Kisvarsanyi, M.S., Geologist Ardel W. Rueff, B.A., Geologist Arthur W. Hebrank, B.S., Geologist Kathryn Adamick, Stenographer III #### **PUBLICATIONS & INFORMATION** *Jerry D. Vineyard, M.A., Chief Barbara Harris, B.S., Geological Editor Larry N. Stout, A.B., Technical Editor Kittie L. Hale, Clerk IV Barbara R. Miller, Stenographer III Dorothy J. Hardesty, Clerk Typist II Pamela A. Skyles, Librarian #### SUBSURFACE GEOLOGY Kenneth H. Anderson, B.A., Chief Jack S. Wells, B.S., Geologist Joseph L. Thacker, Jr., B.S., Geologist Henry M. Groves, B.S., Geologist Golda L. Roberts, Clerk Typist II Mary J. Horn, Clerk Typist I Woodrow E. Sands, Lab. Supervisor Ira F. Bowen, Asst. Lab. Supervisor Jerry A. Plake, Laboratory Assistant *Certified Professional Geologist by the American Institute of Professional Geologists # CONTENTS | Page | | |------|---| | 1 | ABSTRACT | | 1 | INTRODUCTION | | 2 | PHYSIOGRAPHY | | 3 | GENERALIZED DESCRIPTION OF FLOOD-RUNOFF PATTERNS | | 3 | FLOOD-VOLUME-FREQUENCY CHARACTERISTICS AT GAGING STATIONS | | 5 | TRANSFER OF INFORMATION TO UNGAGED SITES | | 9 | Data Arrangement | | 9 | Flood-Volume Characteristics For Small Drainage Areas | | 10 | Analysis of Residual Errors | | 10 | APPLYING STATION DATA & REGIONAL EQUATIONS TO DESIGN PROBLEMS | | 11 | LIMITATIONS OF REGIONAL EQUATIONS | | 12 | SELECTED REFERENCES | | 13 | INDEX OF STATION NAMES | | 15 | APPENDIX | | | | # **ILLUSTRATIONS** | Page | Figure | | |-------------------------|------------|---| | 2 | 1 | Map of physiographic divisions of Missouri | | 5 | 2 | Frequency curve of 7-day highest mean discharges of James River near Springfield, Mo. | | Inside
Back
Cover | Plate
1 | Gaging stations, average annual runoff, soils infiltration values and areas of anomalous runoff in Missouri | # **TABLES** | Page | | | |------|---|--| | 4 | 1 | Annual highest mean discharges, Thompson Branch near Albany, Mo. | | 6 | 2 | Summary of regression results — Plains region | | 7 | 3 | Summary of regression results — Plateaus region | | 8 | 4 | Summary of regression results — (periods of less than 1 day, small drainage areas) Plains and Plateaus | #### FLOOD-VOLUME DESIGN DATA FOR MISSOURI STREAMS By John Skelton #### **ABSTRACT** Results of a statistical analysis of flood-volume information for Missouri are presented in this report. Flood-volume-duration data for selected recurrance intervals are tabulated for 111 continuous-record gaging stations. By regression analysis, regional flood-volume equations applicable to ungaged sites with drainage basins as small as 0.2 square mile were defined for the Plains and Plateaus regions. Four basin characteristics (drainage area, mean basin elevation, mean runoff, and soils infiltration index) were found to be statistically significant in defining flood volumes; one or more of these variables is required in computing the equations. #### INTRODUCTION During recent years the nationwide construction of flood-control reservoirs and the allocation of capacity in multi-purpose reservoirs for flood control have increased at a higher rate than for any other uses. Growth in numbers and capacity of small flood-storage projects and an increasing use of flood-volume data in design problems appear to be continuing. Past storage analyses (Skelton, 1968 and 1971) have furnished data that are useful in the design of reservoirs to insure dependable year-round water supplies in Missouri. However, for the planning, design, construction and operation of projects that include the storage of flood waters, flood-volume data are needed. These data can be used to determine the quantity of water to be stored in order to reduce flood damage downstream, for computing waterway capacity for highway drainage structures and for designing spillways for dams. Discussions with personnel of state and federal agencies and engineering consulting firms during early phases of this project indicated that the information most helpful to them in their work with floodstorage problems would be (1) flood-volume design data at gaged sites and (2) a method of estimating design volumes at ungaged sites, especially for small drainage areas. Consequently, this report is tailored to meet the needs expressed by the primary users of flood-volume data. It contains a tabulation of floodvolume-duration data for selected recurrence intervals at continuous-record stations in the state and presents regional equations for estimating these data at ungaged sites with drainage basins as small as 0.2 square mile. This report was prepared in the Missouri district of the U.S. Geological Survey, under the direction of Anthony Homyk, District Chief, in cooperation with the Missouri Geological Survey and Water Resources, Wallace B. Howe, State Geologist and Director. The information in this report is based on data collected by the U.S. Geological Survey in cooperation with state and federal agencies. #### **PHYSIOGRAPHY** Past hydrologic studies in Missouri have shown that physiography has a very pronounced effect on streamflow characteristics. Thus it is important to define the distinctive physiographic regions of the state as a prelude to describing the flood-volume analysis. The three physiographic divisions of Missouri are the Plains (Osage Plains and Dissected Till Plains), Ozarks (Plateaus) and Southeastern Lowlands (fig. 1). The Plains is primarily a region of wide valleys with rolling hills. Elevations range from 450 feet above sea level near the Mississippi River to 1,000 feet in the western parts of the area. Much of the region is covered by weathered drift brought in by Ice Age glaciers, causing relatively homogeneous hydrologic conditions throughout the area. As a result, flood-runoff prediction is more accurate for this region than for any other in the state. Figure 1 Map of the physiographic divisions of Missouri The Ozarks region is a fairly rugged area of deep, narrow valleys and sharp ridges in the Salem Plateau area. The Springfield Plateau is generally characterized by rolling hills and wider stream valleys. Elevations in the Ozarks range from about 1,000 feet above sea level to more than 1,600 feet. In some stream basins of the area, intense solutional development in the carbonate rocks, faulting and jointing cause non-homogeneous flood-runoff patterns by diverting major portions of the flood runoff to underground storage. Thus, generalization of streamflow characteristics is difficult, requiring delineation of these anomalous losing areas whenever possible. The Southeastern Lowlands region, which is located on the Mississippi River alluvial plain, is a relatively flat area of excellent farmland that is drained by numerous man-made channels. Elevations range from 230 to 300 feet above sea level with the exception of Crowley's Ridge where elevations are about 500 feet. Adequate regionalization of hydrologic data in this region is virtually impossible because of difficulty in measuring basin characteristics such as contributing drainage area (it often changes with stream stage) and the uncertainty associated with numerous and frequent man-made changes. #### GENERALIZED DESCRIPTION OF FLOOD-RUNOFF PATTERNS The following brief description of flood-runoff patterns in Missouri is taken from Skelton and Homyk (1970): "Almost all areas of the State are subject to occasional flooding. Flood runoff per square mile is generally greater in the Ozarks Plateaus than in other areas of the State for drainage areas of comparable size, primarily because of the more rugged topography. However, runoff is quite variable in some sections of the Plateaus during low-order floods because of structural and karst effects. Fault zones and extensive areas of solution openings (sinkholes) in a basin can transmit large quantities of flood runoff from the surface to underground storage reservoirs, causing anomalous patterns of flood runoff. In general, these effects are not evident for floods with recurrence intervals greater than 5 years, although there are some notable exceptions to this rule. In an average year floods in Missouri are more
likely to occur in June, with March and April in second and third place, respectively. Floods are least likely to occur from November through January." #### FLOOD-VOLUME-FREQUENCY CHARACTERISTICS AT GAGING STATIONS The network of gaging stations used to provide data for the flood-volume analysis is shown in plate 1. The stations shown are those that met the following criteria: - Ten or more years of available daily-discharge records. - b. More than 25-percent difference in drainage area between gaging stations located on the same stream. - c. Flood data not materially affected by regulation. - d. Adequate definition of the stage-discharge relation. Annual highest mean discharges in cfs (cubic feet per second) for selected periods were determined from these records by computer. A sample of this output, which is available for 111 Missouri gaging stations, is shown in table 1. TABLE 1 Annual highest mean discharges, in cubic feet per second, for Thompson Branch near Albany, Mo. (Drainage area = 5.58 square miles) | YEAR | 1 Day | 3 Days | 7 Days | 15 Days | 30 Days | |------|-------|--------|--------|---------|---------| | 1956 | 41.0 | 21.8 | 9.3 | 4.4 | 2.2 | | 1957 | 27.0 | 10.3 | 4.4 | 2.1 | 1,1 | | 1958 | 290.0 | 105.0 | 81.8 | 44.8 | 25.9 | | 1959 | 312.0 | 114.0 | 68.5 | 32.3 | 16.1 | | 1960 | 210.0 | 156.0 | 78.9 | 38.3 | 22.7 | | 1961 | 400.0 | 157.0 | 69.4 | 51.7 | 27.0 | | 1962 | 121.0 | 83.1 | 41.7 | 25.0 | 16.4 | | 1963 | 33.0 | 21.7 | 10.4 | 7.0 | 4.0 | | 1964 | 220.0 | 123.0 | 55.3 | 26.3 | 13.3 | | 1965 | 182.0 | 132.0 | 70.0 | 35.1 | 18.8 | | 1966 | 25.0 | 11.8 | 6.2 | 3.0 | 1.7 | | 1967 | 125.0 | 72.3 | 34.0 | 25.1 | 15.6 | | 1968 | 32.0 | 13.0 | 5.6 | 3.5 | 1.8 | | 1969 | 264.0 | 163.0 | 71.2 | 35.3 | 23.2 | | 1970 | 197.0 | 80.3 | 36.3 | 23.7 | 14.5 | For the convenience of those using these data, the highest mean discharges are converted to acre-feet for presentation in the appendix. These data represent the annual highest flood volumes for 1-, 3-, 7-, 15and 30-day periods for selected recurrence intervals at all gaging stations plus 6-, 12- and 18-hour manually-tabulated data for stations with drainage areas less than 50 square miles. The characteristics are noted symbolically in the text and tables. For example, V.25.2 represents a 6-hour flood volume with recurrence interval of 2 years; V7,25 represents a 7-day flood volume with recurrence interval of 25 years. The 1- to 30-day frequency data for all stations were determined by computer, mathematically fitting a Pearson Type III distribution to the logarithms of the annual flood-volume data, as described by the Water Resources Council (1967). Figure 2 is an example of the log-Pearson Type III curve of annual highest mean discharges for a Missouri gaging station. A graphical frequency curve is used for those stations for which the log-Pearson Type III curve is not a reasonable fit to the data. Small-area streams in Missouri generally have highly variable flows. Figures of highest mean discharge for durations of less than one day are needed because a large percentage of the total flood volume may occur in short periods on these streams. For the 6-, 12- and 18-hour periods shown in the appendix, a combination of manual tabulation and graphical procedures were used to compute the necessary frequency data. The highest mean discharge for a period of 24 hours is nearly always greater than that of a calendar day during any given year on these streams. Therefore, manually-tabulated 24-hour data were used in the computations instead of 1-day data furnished by the computer for small-area stations, and graphical adjustments to 3-day data were made where necessary for greater accuracy. All small-area frequency computations were based on the adjusted data. Figure 2 Frequency curve of 7-day highest mean discharges of James River near Springfield, Mo. #### TRANSFER OF INFORMATION TO UNGAGED SITES Each of the flood-volume characteristics defined at gaging stations were related to basin and climatic characteristics by regression; the resulting equations may be used to estimate flood-volume characteristics at ungaged sites. such as 1-day flood volume with recurrence interval of 2 years $(V_{1,2})$; the X's are topographic or climatic characteristics; and the other symbols are coefficients obtained by regression. The regression model used is: $\log Y = \log a + b_1 \log X_1 + b_2 \log X_2 - \cdots - b_n \log X_n$, where Y is a statistical flood-volume characteristic Several graphical plots, made early in this study, established the general applicability of this model to the variables used in the analysis. In the initial phases of this study, the following independent variables were included in the data matrix: drainage area (A), slope (S), length (L), surface storage (St), mean-basin elevation (E), forest cover (F), mean-annual precipitation (P), 2-year, 24-hour precipitation (T_{24,2}), mean-annual runoff (R), soils index (Si) and average basin width (W). A prime assumption in regression analysis is that the various independent variables are not to be highly related to each other. To test this assumption for the flood-volume data matrix, a simple correlation matrix of the 11 evaluated basin characteristics was obtained and analyzed. This procedure indicated that the best results would be obtained by omitting two of TABLE 2 Summary of regression results — Plains region 1 (Model is Y = $aA^{b1}E^{b2}R^{b3}Si^{b4}$; Units are Y = acre-feet, A = square miles, E = thousands of feet, R = inches, Si = inches) | | | Exponent of basin characteristics | | | | | | | | |-----------------------------|-----------------------------|-----------------------------------|------------------------------|---------------------|----------------------|--|--|--|--| | Flow
characteristic
Y | Regression
constant
a | Drainage
area
A | Mean basin
elevation
E | Mean
runoff
R | Soils
Index
Si | Standard
error of
estimate ²
(percent) | | | | | V _{1,2} | 21 | 0.78 | _ | 0.77 | _ | 26 | | | | | 1 10 | 57 | .73 | _ | .82 | - | 29 | | | | | V _{1,25} | 74 | .70 | - | .88 | _ | 34 | | | | | V _{1,50} | 42 | .69 | 1.01 | 1.35 | _ | 36 | | | | | V _{1,100} | 39 | .68 | 1.18 | 1.51 | _ | 39 | | | | | V _{3,2} | 65 | .88 | _ | .61 | -0.69 | 20 | | | | | V _{3,10} | 55 | .86 | _ | .78 | _ | 25 | | | | | V _{3,25} | 68 | .84 | _ | .87 | - | 28 | | | | | V _{3,50} | 72 | .83 | _ | .96 | _ | 32 | | | | | V _{3,100} | 74 | .82 | | 1.05 | _ | 35 | | | | | V _{7,2} | 53 | .92 | _ | .70 | 60 | 18 | | | | | V _{7,10} | 45 | .92 | | .89 | _ | 19 | | | | | V _{7,25} | 50 | .90 | _ | 1.01 | | 22 | | | | | V _{7,50} | 49 | .90 | - | 1.13 | _ | 26 | | | | | V _{7,100} | 52 | .89 | _ | 1.18 | _ | 29 | | | | | V _{15,2} | 48 | .95 | | .73 | 45 | 16 | | | | | V _{15,10} | 42 | .94 | 0.52 | 1.18 | | 17 | | | | | V _{15,25} | 30 | .93 | .68 | 1.35 | _ | 20 | | | | | V _{15,50} | 51 | .93 | _ | 1.16 | _ | 22 | | | | | V _{15,100} | 29 | .92 | .93 | 1.59 | _ | 25 | | | | | V _{30,2} | 28 | .97 | | .88 | _ | 16 | | | | | V _{30,10} | 48 | .96 | - | 1.02 | _ | 16 | | | | | V _{30,25} | 35 | .95 | .72 | 1.38 | | 19 | | | | | V _{30,50} | 38 | .95 | .79 | 1.44 | | 21 | | | | | V _{30,100} | 37 | .95 | _ | 1.23 | - | 19 | | | | ¹Equations are defined by data from streams with drainage areas of 2.5 to 14,000 square miles. Data from 53 gaging stations were used to compute the equations. ²Standard error is defined as the standard deviation of the distribution (assumed normal) of residuals about the regression line and is a measure of the reliability of a regression. A standard error of 30 percent, for example, indicates that the flood-volume estimate obtained from the equation will be within [±] 30 percent of the correct value at about two-thirds of the ungaged sites. the variables, length and average basin width, from the data matrix, and this was done for the final regression runs. The regression equations, standard errors of estimate and the statistical significance of the regression coefficients were obtained by digital computer using the nine basin characteristics chosen for the final analysis. The calculations were then repeated automatically with the least effective basin parameter being omitted in each calculation until only the most effective parameter remained. This procedure was repeated for all the flood volumes selected for this study. The equations selected for use have relatively low standard errors and include only those independent variables that are statistically significant at the 99-percent level. Summary of regression results – Plateaus region 1 (Model is Y = $aA^{b1}E^{b2}R^{b3}Si^{b4}$; Units are Y = acre-feet, A = square miles, E = thousands of feet, R = inches, Si - inches) | | | | Exponent of bas | sin characteristics | | Standard | |---|-----------------------------|-----------------------|------------------------------|---------------------|----------------------|--| | Flow
characteristic
Y | Regression
constant
a | Drainage
area
A | Mean basin
elevation
E | Mean
runoff
R | Soils
index
Si | error of
estimate ²
(percent) | | V _{1,2} | 70 | 0.86 | _ | _ | _ | 42 | | V _{1 10} | 157 | .86 | _ | | _ | 30 | | V _{1,25} | 228 | .85 | _ | _ | _ | 33 | | V1,25 | 296 | .84 | _ | - | | 39 | | V _{1,50}
V _{1,100} | 362 | .84 | _ | - | _ | 42 | | V _{3,2} | 83 | .94 | _ | - | _ | 38 | | V3,2 | 535 | .96 | - | _ | _ | 27 | | V _{3,10}
V _{3,25} | 236 | .95 | _ | - | _ | 34 | | V _{3,25} | 296 | .95 | | - | _ | 40 | | V _{3,50}
V _{3,100} | 361 | .95 | _ | - | _ | 47 | | V _{2 2} | 31 | .97 | - | .47 | _ | 34 | | 7 10 | 713 | .98 | _ | - | -1.00 | 29 | | * 7 25 | 314 | .96 | | _ | _ | 39 | | * 7 50 | 395 | .95 | _ | _ | _ | 46 | | 7 100 | 493 | .94 | - | - | _ | 55 | |
1150 | 113 | 1.01 | _ | - | - | 47 | | 1 5 10 | 88 | .99 | | .43 | _ | 31 | | 15 25 | 384 | .97 | _ | - | _ | 44 | | 1550 | 483 | .97 | - | _ | _ | 50 | | V _{15,100} | 609 | .96 | _ | _ | _ | 60 | | V _{30,2} | 34 | 1.01 | _ | .60 | _ | 34 | | V _{30,10} | 96 | 1.01 | _ | .48 | _ | 31 | | V _{20.25} | 450 | 1.00 | _ | _ | _ | 43 | | V30,25
V30,50 | 565 | .99 | _ | _ | _ | 55 | | V _{30,100} | 696 | .98 | - | - | - | 66 | ¹ Equations are defined by data from streams with drainage areas of 0.2 to 3,800 square miles. Data from 55 gaging stations were used to compute the equations. ²Standard error is defined as the standard deviation of the distribution (assumed normal) of residuals about the regression line and is a measure of the reliability of a regression. A standard error of 30 percent, for example, indicates that the flood-volume estimate obtained from the equation will be within ± 30 percent of the correct value at about two-thirds of the ungaged sites. The independent variables included in the equations of tables 2, 3, and 4 are defined as follows: - a. Drainage area (A), in square miles, was determined from the most recent U.S. Geological Survey topographic maps. - b. Mean basin elevation (E), in feet above mean sea level, was measured on 1:62,500 and 1:24,000 scale U.S. Geological Survey topographic maps for small drainage basins and on 1:250,000 scale U.S. Geological Survey maps for large basins. The elevation was computed by laying a grid over the map, determining the elevation at each grid intersection and averaging those elevations. The grid spacing was selected to give at least 20 intersections within the basin boundary. - c. Mean annual runoff (R), in inches, was computed from the records of stream discharge at each gaging station. The isopleths of annual runoff shown on plate 1 were determined from these station data. - d. Soils infiltration index (Si), in inches, was determined for sub-basins within the state by the Soil Conservation Service (written commun., 1970). These values are shown on plate 1. Weighted averages of these values were used for each gaged drainage basin. These and other selected drainage basin characteristics have been tabulated for Missouri gaging stations by Skelton and Homyk (1970). TABLE 4 Summary of regression results — Data for periods of less than 1 day for small drainage areas in the Plains and Plateaus 1 (Model is Y = aA b 1 E b 2 R b 3 Si b 4; Units are Y = acre-feet, A = square miles, E = thousands of feet, R = inches, Si = inches) | | | | Standard | | | | |-----------------------------|-----------------------------|-----------------------|------------------------------|---------------------|----------------------|--| | Flow
characteristic
Y | Regression
constant
a | Drainage
area
A | Mean basin
elevation
E | Mean
runoff
R | Soils
index
Si | error of
estimate ²
(percent) | | V _{.25,2} | 64 | 0.70 | -1.20 | _ | - | 52 | | V _{.25,10} | 126 | .84 | - | | - | 41 | | V _{.25,25} | 182 | .88 | - | - | - | 42 | | V _{.25,50} | 214 | .93 | - | _ | - | 45 | | V.25,100
V | 240 | .97 | - | - | - | 51 | | * FO 2 | 74 | .77 | -1.19 | | _ | 51 | | V 50 10 | 142 | .92 | _ | _ | - | 40 | | * EO 2E | 189 | .96 | _ | | - | 40 | | 50.50 | 233 | 1.01 | - | - | - | 45 | | * EO 100 | 271 | 1.03 | - | | - | 49 | | 75.2 | 75 | .79 | -1.27 | - | - | 52 | | .75.10 | 168 | .90 | - | - | - | 36 | | *.75.25 | 198 | 1.05 | - | - | - | 47 | | V.75,50 | 225 | 1.08 | _ | _ | - | 50 | | V _{.75,100} | 270 | 1.10 | - | - | - | 52 | ¹Equations are defined by data from streams with drainage areas of 0.2 to 42 square miles in the Plains and Plateaus. Data from 28 gaging stations were used to compute the equations. ²Standard error is defined as the standard deviation of the distribution (assumed normal) of residuals about the regression line and is a measure of the reliability of a regression. A standard error of 30 percent, for example, indicates that the flood-volume estimate obtained from the equation will be within [±]/₂ 30 percent of the correct value at about two-thirds of the ungaged sites. #### DATA ARRANGEMENT The streamflow data study by Skelton and Homyk (1970) indicated that a grouping of gaging stations by physiographic region and (or) drainage-area size is desirable to optimize results from regression analyses for many streamflow characteristics. Accordingly, regression runs using different groupings of the gaging-station data were made during the flood-volume study in order to compute the most stable regression equations with the lowest practical standard errors of estimate. The three methods of data arrangement used for regression were as follows: - a. All data were used in the regression to compute a single statewide equation for each flood-volume characteristic. - b. Data were placed into one of two general groups according to physiographic location of gaging stations within the state (Plains or Plateaus). c. Data were categorized according to drainage area size (less than 50 square miles and greater than 50 square miles). Flood-volume data for the Southeastern Lowlands region were excluded from the regression runs for several reasons: (1) A network of only 14 continuous-record stations in the alluvial plain of Missouri and Arkansas did not provide sufficient data for a dependable regression analysis; (2) The terrain is so flat that delineation of contributing drainage areas is very difficult; and (3) Extensive and continuing man-made changes in the area are not conducive to effective regionalization of the available information. The results of regression runs using the three methods of data arrangement plus a combination of methods "b" and "c" indicated that method "b" provided the optimum flood-volume equations for 1- to 30-day data based on stability of the regression coefficients and standard error size. These equations are presented in tables 2 and 3. #### FLOOD-VOLUME CHARACTERISTICS FOR SMALL DRAINAGE AREAS The continuous-record streamflow data available for analysis of flood-volume characteristics for streams with small drainage areas (less than 50 square miles) included 11 gaging stations in the Plains region and 17 in the Ozarks. The stations are well-distributed geographically and are hydrologically representative of small-area flood-volume characteristics in the two regions. Regression runs were made to determine the feasibility of defining flood-volume equations for each region. However, the resulting regression equations showed considerable instability of the coefficients and uncertainty in the statistical significance of the independent variables. Next, the data from all 28 Plains and Plateaus small-area stations were used in combination to compute flood-volume equations that would be applicable to both regions. The stability of the coefficients as well as the standard errors of the resulting equations showed substantial improvement over the previous regression runs, and the equations were considered satisfactory for use. Table 4 is a summary of the regression results for 6-, 12- and 18-hour periods. The equations are applicable to ungaged sites in both the Plains and Plateaus. #### ANALYSIS OF RESIDUAL ERRORS For this report, residual errors are defined as the ratio of flood-volume data measured at each gaging station to that computed from the equations. The amount of deviation from an exact agreement between observed and computed values (1.00) and the geographic distribution or pattern of the values can be used to determine if some significant basin or climatic characteristic has been omitted from the regional analysis. If so, a geographic correction factor can be applied to the appropriate equation. Analysis of the residuals led to the conclusion that no significant regional patterns exist, although a few large deviations between observed and computed values were noted. Because of this random distribution pattern, no geographic correction factors were deemed necessary. # APPLYING STATION DATA AND REGIONAL EQUATIONS TO DESIGN PROBLEMS When flood volume information may be used to solve hydrologic problems in the state, this report should be utilized in the following manner: - a. Plate 1 should be examined to determine if any of the gaging station data presented in the appendix are applicable to the problem, with perhaps a small adjustment for drainage area differences. These data should be used whenever possible because they represent hydrologic experience at a particular site rather than a generalization of data from many other stations. - b. At sites where data are not available, the regional equations of tables 2, 3, and 4 must be utilized to obtain flood volume estimates. The equations of tables 2 and 3 are applicable to different physiographic regions; figure 1 must be used to choose the appropriate region. The independent variables necessary for solution of the equations are drainage area (A) in square miles, mean basin elevation (E) in thousands of feet, mean annual runoff (R) in inches, and soils infiltration index (Si) in inches. The variables A and E must be computed by the user from topographic maps. The variables R and Si may be obtained by locating the basin of interest on plate 1 and choosing the appropriate values. Use the center of the basin as the point of estimation for R and interpolate between the isopleths; use an areally weighted average for Si if more than one value is shown upstream from the point of interest. #### LIMITATIONS OF REGIONAL EQUATIONS Prior to project planning and analysis of structural design, the following limitations and restrictions applicable to the regional equations should be considered. - a. The equations are applicable only to sites where flood flow is virtually natural. They do not apply to basins where high flows are affected by regulation, diversion, urbanization or channelization. Because of backwater effects, they are not
applicable near the mouths of streams draining into larger streams. - b. The equations should be used only within the range of the drainage-areas shown on tables 2,3 and 4. - c. The equations are not applicable to the Southeastern Lowlands region. - d. Regionalization results are less precise in the Ozarks than in the Plains region of the state. The cavernous limestone and dolomite formations of the area are capable of altering normal patterns of storm runoff and causing anomalous hydrologic situations within and among basins. The major problem in generalizing flood volumes in the Ozarks is one of economics. Gross overdesign of structures is likely in those basins where significant amounts of storm runoff are diverted to natural underground flood-detention reservoirs and gradually released in the springs and seeps of the region. It can be assumed that only a few basins in the Ozarks are underlain by bedrock so cavernous as to cause a significant reduction in flood volumes during severe floods (recurrence interval of 10 years or more). Logan Creek basin in Reynolds County and the upper Eleven Point River basin in Howell and Oregon Counties are the only ones where sufficient data have been collected to verify this assumption, but a few others may exist. It is recommended that the areas of known deficient runoff patterns indicated on plate 1 be considered when flood-volume estimates are made for the Ozarks. If a structure is to be located in one of these areas, then field reconnaissance during a period of flood runoff will be necessary to make observations of significant deviations from normal flood runoff patterns. If deficient storm runoff is noted, adjustments to design estimates based on engineering judgment will be required to avoid gross overdesign. #### SELECTED REFERENCES - Benson, M.A., 1962, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geol. Survey, Water-Supply Paper 1580-B, 64 p., 1 pl., 9 figs., 4 tbls. - Fenneman, N.M., 1938, Physiography of the eastern United States: McGraw-Hill, 714 p. - Missouri Geological Survey and Water Resources, 1967, Physiography, in Mineral and Water Resources of Missouri: Mo. Geol. Survey and Water Resources, 2nd ser., v. 43, p. 14, 1 fig. - **Riggs, H.C.,** 1968, Some statistical tools in hydrology: U.S. Geol. Survey, Techniques of Water Resources Investigations, Book 4, Chap. A 1, 39 p., 26 figs., 5 tbls. - Sandhaus, E.H., and John Skelton, 1968, Magnitude and frequency of Missouri floods: Mo. Geol. Survey and Water Resources, Water Resources Rept. 23, 276 p., 1 pl., 2 figs., 2 tbls., 2 app. - **Skelton, John,** 1968, Storage requirements to augment low flows of Missouri streams: Mo. Geol. Survey and Water Resources, Water Resources Rept. 22, 78 p., 1 pl., 6 figs., 1 tbl., 1 app. - _____, 1971, Carryover storage requirements for reservoir design in Missouri: Mo. Geol. Survey and Water Resources, Water Resources Rept. 27, 56 p., 1 pl., 9 figs., 1 tbl., 1 app. - **Skelton, John, and Anthony Homyk,** 1970, A proposed streamflow data program for Missouri: U.S. Geol. Survey, Open-File Rept., 77 p. - U.S. Army Corps of Engineers, 1955, Stream flow volume-duration-frequency studies: Civil Works Investigations Project CW-152, Technical Rept. No. 1. - U.S. Water Resources Council, 1967, A uniform technique for determining flood flow frequencies: U.S. Water Resources Council, Bull. 15, 15 p. # INDEX OF STATION NAMES | Station no. (see app.) | Station name | Station no. (see app.) | Station name | |------------------------|--------------------------------------|------------------------|--| | | A - B | | G | | 07035500 | Barnes Creek near Fredericktown | 06933500 | Gasconade River at Jerome | | 05502000 | Bear Creek at Hannibal | 06928000 | Gasconade River near Hazlegreen | | 07012000 | Behmke Branch near Rolla | 06934000 | Gasconade River near Rich Fountain | | 07064500 | Big Creek near Yukon | 06928500 | Gasconade River near Waynesville | | 06927200 | Big Hollow near Fulton | 06897500 | Grand River near Gallatin | | 06930000 | Big Piney River near Big Piney | 06902000 | Grand River near Sumner | | 07018500 | Big River at Byrnesville | 07011500 | Green Acre Branch near Rolla | | 07018000 | Big River near DeSoto | | | | 07061500 | Black River near Annapolis | | H-1 | | 06908000 | Blackwater River at Blue Lick | 06902500 | Hamilton Branch near New Boston | | 06893500 | Blue River near Kansas City | | | | 07016500 | Bourbeuse River at Union | | J | | 07015000 | Bourbeuse River near St. James | 07066000 | Jacks Fork at Eminence | | 07058000 | Bryant Creek near Tecumseh | 07052500 | James River at Galena | | | | 07050700 | James River near Springfield | | | С | 06821000 | Jenkins Branch at Gower | | 07043000 | Castor River at Aquilla | | | | 07021000 | Castor River at Zalma | | K | | 06919500 | Cedar Creek near Pleasant View | 07070000 | Kings Creek near Willow Springs | | 06904500 | Chariton River at Novinger | 07070000 | Kings creek flear willow Springs | | 06905500 | Chariton River near Prairie Hill | | L | | 07037700 | Clark Creek near Piedmont | | | | 06895000 | Crooked River near Richmond | 06907000 | Lamine River at Clifton City | | 05514500 | Cuivre River near Troy | 07015500 | Lanes Fork near Rolla | | 07068000 | Current River at Doniphan | 06928200 | Laquey Branch near Hazlegreen | | 07067000 | Current River at Van Buren | 06931500 | Little Beaver Creek near Rolla | | 07066500 | Current River near Eminence | 06894000 | Little Blue River near Lake City | | | | 06932000 | Little Piney Creek at Newburg Little River ditch 1 near Kennett | | | D | 07042000 | Cittle initial differing the control of the city | | 07017500 | Dry Branch near Bonne Terre | 07041000 | Little River ditch 81 near Kennett Little River ditch 251 near Kennett | | | E | 07044000 | (includes Little River ditch 66) | | | | 07046000 | Little River ditch 259 near Kennett | | 06897000 | East Fork Big Creek near Bethany | 07042500 | Little River ditch 251 near Lilbourn | | 06894500 | East Fork Fishing River at Excelsion | 07043500 | Little River ditch 1 near Morehouse | | | Springs | 06901500 | Locust Creek near Linneus | | 07071500 | Eleven Point River near Bardley | 07188500 | Lost Creek at Seneca | | 07070500 | Eleven Point River near Thomasville | 06935500 | Loutre River at Mineola | | 05507000 | Elk Fork Salt River near Paris | | | | 07189000 | Elk River near Tiff City | | М | | | F | 06927000 | Maries River at Westphalia | | 05495000 | Fox River at Wayland | 06900000 | Medicine Creek near Galt | | 07064300 | Fudge Hollow near Licking | 07017000 | Meramec River at Robertsville | | Station no. (see app.) | Station name | Station no. (see app.) | Station name | |------------------------|---------------------------------------|------------------------|--------------------------------------| | | (continued) | S | | | 07019000 | Meramec River near Eureka | 07037500 | St. Francis River near Patterson | | 07013000 | Meramec River near Steelville | 05508000 | Salt River near New London | | 07014500 | Meramec River near Sullivan | 05502500 | Salt River near Shelbina | | 05497500 | Middle Fabius River near Baring | 06908500 | Shiloh Branch near Marshall | | 05498000 | Middle Fabius River near Monticello | 07187000 | Shoal Creek above Joplin | | 05506500 | Middle Fork Salt River at Paris | 05500000 | South Fabius River near Taylor | | 06816000 | Mill Creek at Oregon | 06907500 | South Fork Blackwater River near Elm | | 06909500 | Moniteau Creek near Fayette | 05504900 | South Fork Salt River near Santa Fe | | 06910500 | Moreau River near Jefferson City | 06922000 | South Grand River near Brownington | | | | 07185700 | Spring River at Larussell | | | N | 07186000 | Spring River near Waco | | | · · | 07185500 | Stahl Creek near Miller | | 06924000 | Niangua River near Decaturville | 06925200 | Starks Creek at Preston | | 06817500 | Nodaway River near Burlington Junctio | n | | | 05497000 | North Fabius River at Monticello | | T - U | | 05498500 | North Fabius River at Taylor | 06813000 | Tarkio River at Fairfax | | 07057500 | North Fork River near Tecumseh | 06896500 | Thompson Branch near Albany | | 05500500 | North River at Bethel | 06899500 | Thompson River at Trenton | | 05501000 | North River at Palmyra | | | | | | | V | | | 0 | 06926200 | Van Cleve Branch near Meta | | 05503000 | Oak Dale Branch near Emden | | W - X | | 06918700 | Oak Grove Branch near Brighton | 06896000 | Wakenda Creek at Carrollton | | 06819500 | 102 River near Maryville | 06899000 | Weldon River at Mill Grove | | 06920500 | Osage River at Osceola | 06898500 | Weldon River near Mercer | | 00320000 | Osago Filver at Osocola | 06820000 | White Cloud Creek near Maryville | | | P - Q - R | 05496000 | Wyaconda River above Canton | | 06910000 | Petite Saline Creek near Boonville | | | | 06820500 | Platte River near Agency | | Y - Z | | 06921000 | Pomme de Terre River near Bolivar | 05506000 | Vounge Crook poor Movice | | 00921000 | Tomine de Terre Niver flear Dollvar | 05506000 | Youngs Creek near Mexico | # **APPENDIX** Flood-Volume-Duration Recurrence Data for Missouri Streamgaging Stations APPENDIX Flood-volume-duration recurrence data for Missouri streamgaging stations | | 122 24 | Drainage | Record | Recurrence | F | lood volum | ne, in acre | e-feet, for | r indicate | d duration | , in days | | |-------------------|---------------------------|------------------|---------------------|----------------------------|------|------------|-------------|--------------------|--|------------------|-----------|-------------------------| | Station
number | Station name and location | area
(sq mi) | used in
analysis | interval <u>a/</u> (years) | 0.25 | 0.50 | 0.75 | 1 | 3 | 7 | 15 | 30 | | 05495000 | Fox River at Wayland | 400 ^b | 1924-69 | 2 | - | - | | 10,500 | 23,200 | 31,500 | 42,600 |
54,000 | | | | | | 10 | - | - | - | 21,600 | 46,000 | 60,200 | 78,000 | 99,600 | | | | | | 25 | - | - | - | 25,800 | 55,400 | 71,500 | 90,600 | 116,000 | | | | | | 50
100 | - | : | - | 36,000
40,000 | 61,200
78,000 | 78,700
98,000 | 108,000 | 138,000 | | 05496000 | Wyaconda River above | 202 | 1022 (0 | | | | | 520 5 53599 | 3000 T. C. | | | 100 Table • 000 Table 1 | | 03496000 | Canton. | 393 | 1933-69 | 2 | - | - | - | 9,420 | 22,600 | 32,200 | 42,900 | 55,200 | | | Cancon. | | | 10 | - | - | - | 20,400 | 46,500 | 62,000 | 83,100 | 109,000 | | | | | | 25 | - | - | - | 26,800 | 57,600 | 73,000 | 98,400 | 128,000 | | | | | | 50 | • | - | - | 32,000 | 65,400 | 80,000 | 129,000 | 168,000 | | | | | | 100 | - | - | - | 37,400 | 72,600 | 85,700 | 138,000 | 198,000 | | 05497000 | North Fabius River at | 452 | 1924-69 | 2 | | - | - | 13,500 | 28,200 | 37,800 | 46,800 | 58,200 | | | Monticello. | | | 10 | - | - | - | 24,200 | 52,300 | 67,300 | 89,100 | 113,000 | | | | | | 25 | - | - | - | 28,000 | 60,600 | 76,200 | 107,000 | 137,000 | | | | | | 50 | - | - | - | 30,400 | 65,400 | 95,200 | 135,000 | 198,000 | | | | | | 100 | - | - | - | 32,400 | 78,000 | 106,000 | 150,000 | 240,000 | | 05497500 | Middle Fabius River | 185 | 1936-60 | 2 | _ | - | _ | 7,600 | 15,200 | 18,900 | 23,700 | 29,100 | | | near Baring. | | | 10 | - | - | - | 14,000 | 28,000 | 32,500 | 41,100 | 52,500 | | | | | | 25 | - | - | - | 16,400 | 26,800 | 36,800 | 46,800 | 60,000 | | | | | | 50 | - | - | - | 17,700 | 38,400 | 44,800 | 60,000 | 78,000 | | 05498000 | Middle Fabius River | 393 | 1946-69 | 2 | - | - | | 8,640 | 22,400 | 32,300 | 42,300 | 54,300 | | | near Monticello. | | | 10 | - | - | - | 16,800 | 43,300 | 58,800 | 73,400 | 99,000 | | | | | | 25 | - | - | _ | 20,800 | 52,000 | 68,300 | 84,300 | 116,000 | | | | | | 50 | - | - | - | 23,800 | 63,000 | 84,000 | 108,000 | 138,000 | | 05498500 | North Fabius River | 930 | 1931-40 | 2 | - | | _ | 18,100 | 46,200 | 69,700 | 90,600 | 106,000 | | | at Taylor. | | | 10 | - | - | _ | 44,600 | 102,000 | 148,000 | 207,000 | 270,000 | | | | | | 25 | - | - | - | 58,800 | 123,000 | 174,000 | 300,000 | 390,000 | | | | | | 50 | - | | - | | , | , | - | 370,000 | | | | | | 100 | - | - | - | - | - | - | - | | | 05500000 | South Fabius River near | 620 | 1937-69 | 2 | - | | - | 13,000 | 31,900 | 45,400 | 59,700 | 78,600 | | | Taylor. | | 200000000 | 10 | 2 | | _ | 23,400 | 57,500 | 85,100 | 118,000 | 152,000 | | | 15. | | | 25 | - | | - | 28,400 | 69,600 | 105,000 | 149,000 | 190,000 | | | | | | 50 | | _ | - | 32,000 | 78,000 | 120,000 | 172,000 | 217,000 | | | | | | 100 | - | - | - | 38,800 | 85,800 | 135,000 | 196,000 | 244,000 | | 05500500 | North River at | 58 ^b | 1937-69 | 2 | | | - | 2,400 | 4 560 | 5 500 | 7 200 | - | | | Bethel. | | | 10 | | | - | 5,500 | 4,560
9,120 | 5,500 | 7,200 | 9,000 | | | | | | 25 | - | | - | 7,400 | | 10,600 | 14,400 | 18,000 | | | | | | 50 | | | - | | 11,500 | 13,300 | 18,300 | 23,400 | | | | | | 100 | - | | - | 9,000 | 13,300 | 15,400 | 21,300 | 27,400 | | | | | | 100 | - | - | - | 10,700 | 15,100 | 17,500 | 24,300 | 31,200 | | 05501000 | North River at | 373 | 1937-69 | 2 | - | - | - | 13,300 | 24,000 | 30,200 | 39,000 | 53,400 | |----------|---|--------------------|----------|-----|-------|-------|-------|------------|---------|---------------------|---------|--| | | Palmyra. | | | 10 | - | - | - | 26,000 | 45,500 | 58,400 | 76,800 | 100,000 | | | | | | 25 | - | - | - | 32,400 | 55,100 | 71,700 | 94,200 | 119,000 | | | | | | 50 | - | - | - | 37,200 | 61,800 | 80,900 | 106,000 | 138,000 | | | | | | 100 | - | - | - | 41,600 | 67,800 | 89,900 | 118,000 | 162,000 | | | | | | | | | | 41,000 | 07,000 | 07,700 | 110,000 | 102,000 | | 05502000 | Bear Creek at | 31 | 1940-42. | 2 | 850 | 1,320 | 1,460 | 1,650 | 2,100 | 2,600 | 3,000 | 3,900 | | | Hannibal. | | 1948-69 | 10 | 1,860 | 2,650 | 3,240 | 3,600 | 5,140 | 6,200 | 6,500 | 8,100 | | | | | | 25 | 2,570 | 3,470 | 4,230 | 4,700 | 6,900 | 8,050 | 8,250 | 10,200 | | | | | | 50 | 3,060 | 4,550 | 5,190 | 5,900 | 9,480 | 10,800 | 11,000 | 13,200 | | | | | | 100 | - | -, | - | - | - | - | - | 15,200 | | | | | | | | | | | | | | | | 05502500 | Salt River near | 481 | 1934-69 | 2 | - | - | . 7 | 10,900 | 26,500 | 37,900 | 48,300 | 63,600 | | | Shelbina. | | | 10 | - | - | - | 20,800 | 50,100 | 70,100 | 94,500 | 132,000 | | | | | | 25 | - | - | - | 25,000 | 61,200 | 85,500 | 119,000 | 172,000 | | | | | | 50 | - | - | - | 29,800 | 69,600 | 96,500 | 137,000 | 240,000 | | | | | | 100 | - | - | - | 33,400 | 77,400 | 107,000 | 155,000 | 288,000 | | | V 2 V 0 V 0 | | | | | | | | | • | | , | | 05503000 | Oak Dale Branch | 2.64 | 1956-70 | 2 | 170 | 228 | 240 | 260 | 336 | 420 | 480 | 600 | | | near Emden. | | | 10 | 330 | 455 | 558 | 620 | 690 | 840 | 1,020 | 1,200 | | | | | | 25 | 480 | 510 | 735 | 840 | 930 | 1,100 | 1,320 | 1,400 | | | | | | 50 | 545 | 730 | 900 | 1,030 | 1,140 | 1,300 | 1,560 | 1,600 | | | graduage a recognition of the contraction | | | | | | | | | | | | | 05504900 | South Fork Salt River | 295 | 1940-69 | 2 | - | - | - | 10,300 | 20,400 | 26,000 | 31,800 | 44,100 | | | near Santa Fe. | | | 10 | - | - | - | 20,400 | 44,300 | 58,400 | 75,300 | 101,000 | | | | | | 25 | - | - | - | 23,800 | 53,700 | 72,000 | 95,400 | 124,000 | | | | | | 50 | - | - | - | 29,000 | 66,000 | 96,600 | 135,000 | 162,000 | | | | | | | | | | 350 | 5/ | | | | | 05506000 | Youngs Creek near | 67.4 | 1937-67 | 2 | - | - | - | 3,300 | 5,550 | 6,600 | 8,100 | 11,100 | | | Mexico. | | | 10 | - | - | - | 6,800 | 11,400 | 14,000 | 17,800 | 22,500 | | | | | | 25 | - | - | - | 8,280 | 13,700 | 17,500 | 22,400 | 27,000 | | | | | | 50 | - | - | - | 10,000 | 15,600 | 22,400 | 29,100 | 33,000 | | | | | | 100 | - | - | - | 11,400 | 20,400 | 25,200 | 33,000 | 37,200 | | 05506500 | | | | | | | | | | | | | | 05506500 | Middle Fork Salt River | 356 | 1940-69 | 2 | - | - | - | 8,440 | 21,000 | 30,200 | 39,600 | 55,500 | | | at Paris. | | | 10 | - | - | - | 19,400 | 43,400 | 59,100 | 79,500 | 106,000 | | | | | | 25 | - | - | - | 27,400 | 57,200 | 74,700 | 103,000 | 132,000 | | | | | | 50 | - | - | - | 34,600 | 68,400 | 86,400 | 122,000 | 168,000 | | 05507000 | Pill Paul Cala Pi | 262 | | | | | | | | | | | | 05507000 | Elk Fork Salt River | 262 | 1936-54 | 2 | - | | - | 10,600 | 21,200 | 26,500 | 35,400 | 44,700 | | | near Paris. | | | 10 | - | - | - | 21,200 | 43,600 | 53,800 | 74,100 | 93,000 | | | | | | 25 | - | - | - | 25,600 | 60,000 | 77,000 | 93,900 | 120,000 | | | | | | 50 | - | - | - | 33,600 | 70,800 | 92,400 | 109,000 | 142,000 | | | | | | | | | | | | 2000 0 T 100000 0 K | | 20 days - day | | 05508000 | Salt River near | 2,480 ^b | 1923-69 | 2 | - | - | 1.5 | 49,400 | 124,000 | 190,000 | 253,000 | 355,000 | | | New London | 65 | | 10 | - | - | - | 87,800 | 232,000 | 356,000 | 483,000 | 690,000 | | | | | | 25 | - | - | - | 106,000 | 283,000 | 433,000 | 606,000 | 864,000 | | | | | | 50 | - | - | - | 119,000 | 320,000 | 487,000 | | 1,000,000 | | | | | | 100 | - | - | - | 131,000 | 355,000 | 540,000 | | 1,130,000 | | | | | | | | | | ********** | | | , , , , | ,, | a/ Recurrence interval is the average interval of time within which a given event will be exceeded once. Recurrence intervals are averages and do not imply regularity of occurrence; an event of 50-year recurrence interval might be exceeded in consecutive years, for instance. In terms of probability, a 50-year flood volume has a 2-percent chance of occurring in any year. <u>b/</u> Approximately. # FLOOD-VOLUME-DURATION RECURRENCE DATA (Continued). | | | Drainage | Record | Recurrence | I | Flood volum | e, in acr | e-feet, fo | r indicate | duration | , in days | | |-------------------|---------------------------|--------------------|---------------------|--------------------------------|-------|-------------|-----------|------------
------------|----------|-----------|---------| | Station
number | Station name and location | area
(sq mi) | used in
analysis | interval <u>a</u> /
(years) | 0.25 | 0.50 | 0.75 | 1 | 3 | 7 | 15 | 30 | | 05514500 | Cuivre River near | 903 | 1924-69 | 2 | - | - | - | 34,600 | 63,000 | 82,500 | 109,000 | 145,000 | | | Troy. | | | 10 | - | _ | - | 70,200 | 133,000 | 171,000 | 228,000 | 317,000 | | | | | | 25 | - | - | - | 82,600 | 160,000 | 204,000 | 275,000 | 389,000 | | | | | | 50 | - | - | - | 116,000 | 213,000 | 266,000 | 345,000 | 492,000 | | | | | | 100 | - | - | - | 136,000 | 246,000 | 308,000 | 390,000 | 576,000 | | 06813000 | Tarkio River at | 508 | 1924-69 | 2 | - | - | - | 8,620 | 14,800 | 20,700 | 29,400 | 39,000 | | | Fairfax. | | | 10 | - | - | - | 19,300 | 35,600 | 48,400 | 66,300 | 85,200 | | | | | | 25 | - | - | - | 24,400 | 46,700 | 62,600 | 84,000 | 106,000 | | | | | | 50 | - | - | - | 28,000 | 54,800 | 72,800 | 96,000 | 129,000 | | | | | | 100 | - | - | - | 31,200 | 62,400 | 82,700 | 107,000 | 147,000 | | 06816000 | Mill Creek at | 4.90 | 1951-70 | 2 | 126 | 130 | 132 | 140 | 180 | 220 | 270 | 360 | | | Oregon. | | | 10 | 350 | 395 | 430 | 440 | 468 | 530 | 720 | 840 | | | | | | 25 | 725 | 800 | 900 | 1,000 | 1,100 | 1,200 | 1,300 | 1,400 | | | | | | 50 | 925 | 950 | 1,000 | 1,200 | 1,800 | 2,000 | 2,200 | 2,440 | | 06817500 | Nodaway River near | 1,240 ^b | 1924-69 | 2 | - | - | - | 18,800 | 38,400 | 56,100 | 79,500 | 110,000 | | | Burlington Junction. | | | 10 | - | - | - | 43,200 | 92,400 | 133,000 | 192,000 | 262,000 | | | | | | 25 | - | - | - | 55,800 | 124,000 | 176,000 | 257,000 | 346,000 | | | | | | 50 | - | - | - | 65,000 | 148,000 | 211,000 | 309,000 | 411,000 | | | | | | 100 | - | - | - | 73,800 | 173,000 | 248,000 | 360,000 | 476,000 | | 06819500 | 102 River near | 500 ^b | 1933-69 | 2 | - | - | - | 11,600 | 23,400 | 31,600 | 43,500 | 57,600 | | | Maryville. | | | 10 | - | - | - | 21,200 | 47,600 | 62,300 | 89,100 | 115,000 | | | | | | 25 | - | - | - | 24,400 | 56,800 | 72,500 | 104,000 | 132,000 | | | | | | 50 | - | - | - | 30,000 | 70,800 | 88,200 | 138,000 | 174,000 | | | | | | 100 | - | - | - | 33,000 | 80,400 | 96,600 | 153,000 | 195,000 | | 06820000 | White Cloud Creek | 6.06 | 1949-69 | 2 | 242 | 300 | 315 | 380 | 456 | 560 | 660 | 840 | | | near Maryville. | | | 10 | 785 | 960 | 1,080 | 1,100 | 1,180 | 1,370 | 1,620 | 2,040 | | | | | | 25 | 1,160 | 1,310 | 1,440 | 1,500 | 1,550 | 1,750 | 2,100 | 2,640 | | | | | | 50 | 1,500 | 1,690 | 1,830 | 1,880 | 1,900 | 2,000 | 2,400 | 3,000 | | 06820500 | Platte River near | 1,760 ^b | 1933-69 | 2 | - | - | - | 28,600 | 74,400 | 119,000 | 160,000 | 206,000 | | | Agency. | | | 10 | - | - | 1.5 | 59,000 | 152,000 | 248,000 | 345,000 | 476,000 | | | | | | 25 | - | - | - | 82,000 | 179,000 | 288,000 | 408,000 | 584,000 | | | | | | 50 | - | - | - | 96,000 | 234,000 | 364,000 | 555,000 | 720,000 | | | | | | 100 | - | - | - | 110,000 | 270,000 | 420,000 | 645,000 | 828,000 | | 06821000 | Jenkins Branch at | 2.72 | 1950-70 | 2 | 125 | 160 | 188 | 200 | 210 | 280 | 360 | 480 | | | Gower. | | | 10 | 520 | 610 | 690 | 720 | 780 | 812 | 900 | 1,200 | | | | | | 25 | 800 | 1,000 | 1,140 | 1,200 | 1,250 | 1,230 | 1,380 | 1,800 | | | | | | 50 | 1,150 | 1,380 | 1,520 | 1,600 | 1,700 | 1,850 | 1,920 | 2,160 | | 06893500 | Blue River near
Kansas City. | 188 | 1941-69 | 2
10
25
50 | : | : | : | 10,400
26,000
34,200
44,000 | 14,900
40,000
56,200
78,000 | 18,600
47,600
64,000
86,800 | 24,300
62,100
83,100
112,000 | 33,900
79,200
99,600
135,000 | |----------|---|--------|---------|----------------------------|--------------------------------|--------------------------------|---------------------------------|---|---|---|--|---| | 06894000 | Little Blue River
near Lake City. | 184 | 1950-69 | 2
10
25
50 | : | : | : | 5,860
13,400
18,800
22,000 | 11,800
28,400
35,600
47,400 | 14,700
35,800
45,500
61,600 | 18,900
47,400
61,800
84,000 | 24,900
62,400
90,000
111,000 | | 06894500 | East Fork Fishing River at Excelsior Springs. | 20 | 1953-69 | 2
10
25
50 | 715
2,460
4,680
6,750 | 860
3,420
6,180
9,950 | 960
4,050
7,470
11,200 | 1,000
4,560
8,160
12,400 | 1,140
5,000
8,800
13,000 | 1,400
5,530
9,520
13,700 | 1,950
6,750
10,100
14,100 | 2,400
8,100
12,300
15,900 | | 06895000 | Crooked River near
Richmond. | 159 | 1950-69 | 2
10
25
50 | : | : | : | 5,820
21,000
36,000
52,000 | 10,200
36,400
60,600
85,800 | 12,900
43,400
69,400
94,600 | 16,600
53,700
82,200
108,000 | 21,000
67,800
102,000
132,000 | | 06896000 | Wakenda Creek at
Carrollton. | 248 | 1950-69 | 2
10
25
50 | : | : | : | 7,600
12,800
14,800
17,000 | 15,900
31,600
40,200
46,800 | 20,400
42,800
51,200
61,600 | 26,100
54,600
73,500
87,000 | 32,100
75,600
108,000
138,000 | | 06896500 | Thompson Branch near Albany. | 5.58 | 1955-70 | 2
10
25
50 | 192
560
780
935 | 250
710
960
1,190 | 262
825
1,140
1,440 | 288
910
1,300
1,630 | 390
1,190
1,620
1,930 | 448
1,460
2,030
2,450 | 540
1,700
2,400
2,800 | 600
2,040
2,760
3,300 | | 06897000 | East Fork Big Creek
near Bethany. | 95 | 1935-70 | 2
10
25
50
100 | : | : | | 3,700
7,200
8,300
11,800
13,600 | 7,020
13,800
20,400
25,200
29,400 | 9,400
16,500
22,400
26,600
30,800 | 11,400
22,500
26,100
33,000
39,000 | 13,800
29,700
36,000
52,200
60,000 | | 06897500 | Grand River near
Gallatin. | 2,250b | 1921-69 | 2
10
25
50
100 | : | : | | 44,000
91,000
112,000
138,000
160,000 | 107,000
247,000
315,000
362,000
405,000 | 154,000
377,000
486,000
563,000
634,000 | 200,000
498,000
651,000
759,000 | 252,000
648,000
876,000
1,000,000
1,220,000 | | 06898500 | Weldon River near
Mercer. | 246 | 1940-59 | 2
10
25
50 | : | : | : | 11,400
31,200
45,600
58,400 | 17,000
44,600
63,600
79,200 | 21,800
53,200
72,500
88,200 | 27,900
63,600
85,800
104,000 | 34,200
86,400
121,000
149,000 | | 0689900σ | Weldon River at
Mill Grove | 494 | 1930-69 | 2
10
25
50
100 | : | : | : | 14,700
36,800
51,000
62,600
75,200 | 27,100
68,400
94,200
115,000
137,000 | 36,700
84,600
109,000
127,000
144,000 | 47,700
107,000
137,000
158,000
178,000 | 60,600
146,000
191,000
240,000
288,000 | a/ Recurrence interval is the average interval of time within which a given event will be exceeded once. Recurrence intervals are averages and do not imply regularity of occurrence; an event of 50-year recurrence interval might be 19 exceeded in consecutive years, for instance. In terms of probability, a 50-year flood volume has a 2-percent chance of occurring in any year. <u>b/</u> Approximately. | 200000 | | Drainage | Record | Recurrence | F | Flood volume, | in acr | e-feet, for | indicate | d duration | n, in days | | |-------------------|---------------------------|--------------------|---------------------|--------------------------------|------|---------------|--------|-------------|----------|------------|------------|-----------| | Station
number | Station name and location | area
(sq mi) | used in
analysis | interval <u>a</u> /
(years) | 0.25 | 0.50 | 0.75 | 1 | 3 | 7 | 15 | 30 | | 06899500 | Thompson River at | 1,670 ^b | 1929-69 | 2 | | _ | - | 33,400 | 75,600 | 114,000 | 157,000 | 198,000 | | | Trenton. | | | 10 | _ | _ | - | 81,000 | 183,000 | 252,000 | 345,000 | 479,000 | | | | | | 25 | - | - | - | 110,000 | 244,000 | 314,000 | 426,000 | 636,000 | | | | | | 50 | - | - | | 132,000 | 290,000 | 392,000 | 540,000 | 750,000 | | | | | | 100 | - | - | - | 156,000 | 338,000 | 462,000 | 615,000 | 864,000 | | 06900000 | Medicine Creek near | 225 | 1922-69 | 2 | - | - | - | 8,100 | 16,700 | 21,700 | 27,300 | 34,800 | | | Galt. | | | 10 | - | - | - | 17,500 | 33,400 | 43,800 | 57,600 | 74,400 | | | | | | 25 | - | - | - | 21,600 | 39,400 | 51,500 | 68,400 | 88,200 | | | | | | 50 | - | - | - | 27,000 | 49,200 | 64,400 | 87,000 | 108,000 | | | | | | 100 | - | - | - | 32,000 | 56,400 | 72,800 | 102,000 | 120,000 | | 06901500 | Locust Creek | 550 ^b | 1931-69 | 2 | - | - | - | 16,200 | 35,800 | 46,200 | 58,500 | 79,200 | | | near Linneus. | | | 10 | - | - | - | 21,800 | 72,600 | 99,700 | 136,000 | 181,000 | | | | | | 25 | - | - | - | 36,600 | 84,000 | 119,000 | 167,000 | 221,000 | | | | | | 50 | - | - | - | 48,000 | 108,000 | 147,000 | 204,000 | 276,000 | | | | | | 100 | - | - | - | 54,000 | 126,000 | 168,000 | 237,000 | 324,000 | | 06902000 | Grand River near | 6,880 ^b | 1925-69 | 2 | - | - | - | 103,000 | 274,000 | 461,000 | 624,000 | 793,000 | | | Sumner. | | | 10 | - | - | - | 200,000 | 545,000 | 967,000 | 1,420,000 | 2,020,000 | | | | | | 25 | - | - | _ | 236,000 | 648,000 | | 1,760,000 | | | | | | | 50 | - | - | - | 290,000 | 780,000 | 1,400,000 | 1,980,000 | 3,150,000 | | | | | | 100 | - | - | - | 330,000 | 870,000 | 1,540,000 | 2,340,000 | 3,620,000 | | 06902500 | Hamilton Branch near | 2.51 | 1956-70 | 2 | 155 | 230 | 248 | 264 | 312 | 420 | 450 | 600 | | | New Boston. | | | 10 | 312 | 445 | 540 | 620 | 700 | 840 | 1,080 | 1,320 | | | | | | 25 | 412 | 565 | 705 | 804 | 960 | 1,060 | 1,500 | 1,800 | | | | | | 50 | 450 | 660 | 825 | 970 | 1,200 | 1,360 |
1,920 | 2,040 | | 06904500 | Chariton River at | 1,370 ^b | 1931-52 | 2 | - | - | - | 17,600 | 55,900 | 78,500 | 124,000 | 168,000 | | | Novinger. | | 1955-69 | 10 | - | - | - | 33,600 | 101,000 | 176,000 | 281,000 | 386,000 | | | | | | 25 | - | - | - | 40,400 | 121,000 | 225,000 | 357,000 | 488,000 | | | | | | 50 | - | - | - | 48,000 | 144,000 | 260,000 | 408,000 | 600,000 | | | | | | 100 | - | - | - | 53,000 | 159,000 | 294,000 | 459,000 | 660,000 | | 06905500 | Chariton River near | 1,870 | 1930-69 | 2 | - | - | - | 23,600 | 61,200 | 110,000 | 166,000 | 230,000 | | | Prairie Hill. | | | 10 | - | - | - | 37,600 | 103,000 | | 354,000 | 514,000 | | | | | | 25 | - | - | - | 43,000 | 119,000 | | 444,000 | 654,000 | | | | | | 50 | - | - | - | 48,000 | 144,000 | | | 780,000 | | | | | | 100 | - | - | - | 54,000 | 162,000 | 350,000 | 630,000 | 960,000 | | 06907000 | Lamine River at | 598 | 1924-69 | 2 | _ | - | - | 22,800 | 45,400 | 58,100 | 71,000 | 97,800 | | | Clifton City. | | | 10 | - | - | - | 50,600 | 96,600 | | | 245,000 | | | | | | 25 | - | - | - | 67,800 | 125,000 | 176,000 | | 344,000 | | | | | | 50 | - | - | - | 81,800 | 148,000 | 211,000 | | 428,000 | | | | | | 100 | - | - | - | 96,800 | 172,000 | 251,000 | | 523,000 | | 06907500 | South Fork Blackwater
River near Elm. | 16.6 | 1955-70 | 2
10
25
50 | 610
1,610
2,160
2,850 | 900
2,280
3,140
4,320 | 960
2,790
3,960
5,070 | 1,000
3,160
4,580
5,960 | 1,300
3,840
5,810
7,620 | 1,500
4,200
6,000
8,300 | 1,860
5,400
7,350
9,000 | 2,400
6,000
11,100
24,600 | |----------|--|--------------------|---------|----------------------------|--------------------------------|--------------------------------|--------------------------------|--|---|---|---|--| | 06908000 | Blackwater River at Blue Lick. | 1,120 ^b | 1940-69 | 2
10
25
50 | : | : | : | 18,100
47,000
68,400
87,600 | 48,600
126,000
181,000
230,000 | 83,700
221,000
312,000
388,000 | 115,000
300,000
414,000
504,000 | 143,000
386,000
545,000
678,000 | | 06908500 | Shiloh Branch near
Marshall. | 2.87 | 1954-65 | 2
10
25 | 125
235
365 | 160
310
455 | 165
368
540 | 170
410
600 | 192
450
700 | 200
500
770 | 270
600
900 | 300
720
1,200 | | 06909500 | Moniteau Creek
near Fayette. | 81 ^b | 1949-67 | 2
10
25
50 | : | : | : | 2,940
4,860
6,200
7,000 | 4,080
6,900
8,100
9,000 | 5,000
8,800
10,600
12,200 | 6,750
10,200
12,000
13,200 | 9,000
15,600
19,800
22,200 | | 06910000 | Petite Saline Creek
near Boonville. | 182 | 1950-65 | 10
25
50 | : | : | : | 5,400
9,900
11,900
13,400 | 10,900
20,300
24,800
28,000 | 13,100
27,300
35,600
42,100 | 15,900
34,500
45,900
55,200 | 21,000
44,400
58,200
69,000 | | 06910500 | Moreau River near
Jefferson City. | 531 | 1948-69 | 2
10
25
50 | : | : | : | 21,400
33,600
36,800
49,000 | 37,900
69,600
90,000
105,000 | 46,600
84,800
112,000
129,000 | 55,200
117,000
156,000
216,000 | 75,600
157,000
194,000
258,000 | | 06918700 | Oak Grove Branch
near Brighton. | 1.30 | 1957-70 | 2
10
25 | 58
135
172 | 72
162
185 | 80
180
218 | 86
200
250 | 110
250
336 | 126
308
420 | 150
360
540 | 180
420
600 | | 06919500 | Cedar Creek near
Pleasant View. | 420 | 1950-69 | 2
10
25
50 | : | : | : | 13,200
29,800
39,000
52,000 | 27,500
61,800
79,200
102,000 | 37,000
88,200
116,000
161,000 | 48,600
118,000
155,000
216,000 | 64,800
145,000
192,000
252,000 | | 06920500 | Osage River at
Osceola. | 8,220 | 1923-69 | 2
10
25
50
100 | : | : | : | 80,000
162,000
208,000
244,000
282,000 | 702,000 | 1,270,000 | 762,000
1,790,000
2,360,000
2,780,000
3,210,000 | 3,710,000
4,530,000 | | 06921000 | Pomme de Terre River
near Bolivar. | 225 | 1952-69 | 2
10
25
50 | : | : | : | 8,280
18,400
24,200
29,000 | 13,500
35,900
51,600
65,400 | 18,800
50,100
71,300
89,200 | 24,600
68,700
99,600
126,000 | 33,600
85,200
119,000
148,000 | a/ Recurrence interval is the average interval of time within which a given event will be exceeded once. Recurrence intervals are averages and do not imply regularity of occurrence; an event of 50-year recurrence interval might be exceeded in consecutive years, for instance. In terms of probability, a 50-year flood volume has a 2-percent chance of occurring in any year. b/ Approximately. | | | Drainage | Record | Recurrence | F | lood volume, | in acr | e-feet, for | indicated | duration | , in days | | |-------------------|---------------------------|--------------------|---------------------|--------------------------------|------|--------------|--------|-------------|-----------|----------|-----------|-----------| | Station
number | Station name and location | area
(sq mi) | used in
analysis | interval <u>a</u> /
(years) | 0.25 | 0.50 | 0.75 | 1 | 3 | 7 | 15 | 30 | | 06922000 | South Grand River | 1,660 ^b | 1922-69 | 2 | - | - | - | 27,000 | 76,800 | 141,000 | 189,000 | 246,000 | | | near Brownington. | | | 10 | - | - | - | 65,000 | 176,000 | 311,000 | 429,000 | 600,000 | | | | | | 25 | - | - | - | 87,800 | 246,000 | 434,000 | 615,000 | 762,000 | | | | | | 50 | - | - | - | 122,000 | 306,000 | 518,000 | 765,000 | 990,000 | | | | | | 100 | - | - | - | 148,000 | 366,000 | 616,000 | 900,000 | 1,170,000 | | 06924000 | Niangua River near | 627 | 1931-69 | 2 | - | - | - | 18,200 | 39,200 | 56,000 | 78,900 | 110,000 | | | Decaturville. | | | 10 | - | - | - | 42,600 | 90,000 | 125,000 | 175,000 | 234,000 | | | | | | 25 | - | - | | 62,000 | 116,000 | 162,000 | 226,000 | 299,000 | | | | | | 50 | - | - | - | 77,000 | 150,000 | 217,000 | 263,000 | 348,000 | | | | | | 100 | - | - | - | 92,000 | 177,000 | 259,000 | 330,000 | 395,000 | | 06925200 | Starks Creek at | 4.18 | 1957-70 | 2 | 300 | 350 | 390 | 410 | 480 | 532 | 660 | 720 | | | Preston. | | | 10 | 440 | 560 | 660 | 720 | 820 | 980 | 1,320 | 1,560 | | | | | | 25 | 570 | 650 | 758 | 840 | 1,000 | 1,180 | 1,740 | 2,040 | | 06926200 | Van Cleve Branch | 0.75 | 1957-70 | 2 | 55 | 66 | 75 | 80 | 82 | 84 | 90 | 120 | | | near Meta. | | | 10 | 95 | 110 | 130 | 140 | 150 | 168 | 210 | 240 | | | | | | 25 | 120 | 140 | 150 | 170 | 190 | 200 | 270 | 360 | | 06927000 | Maries River at | 257 | 1948-69 | 2 | - | - | - | 12,300 | 19,900 | 25,800 | 33,900 | 46,800 | | | Westphalia. | | | 10 | - | - | - | 20,200 | 36,700 | 51,700 | 68,100 | 82,800 | | | | | | 25 | - | - | - | 23,000 | 44,300 | 64,300 | 96,000 | 105,000 | | | | | | 50 | - | - | - | 28,000 | 56,400 | 82,600 | 114,000 | 120,000 | | 06927200 | Big Hollow near | 4.05 | 1958-70 | 2 | 175 | 245 | 262 | 296 | 432 | 560 | 660 | 840 | | | Fulton. | | | 10 | 295 | 410 | 488 | 550 | 700 | 840 | 1,020 | 1,440 | | | | | | 25 | 385 | 515 | 600 | 660 | 820 | 1,010 | 1,260 | 1,800 | | 06928000 | Gasconade River | 1,250b | 1929-69 | 2 | - | - | - | 34,400 | 72,000 | 105,000 | 145,000 | 199,000 | | | near Hazelgreen. | | | 10 | - | - | - | 82,000 | 175,000 | 239,000 | 324,000 | 418,000 | | | | | | 25 | - | - | - | 106,000 | 230,000 | 314,000 | 420,000 | 530,000 | | | | | | 50 | - | - | - | 128,000 | 306,000 | 368,000 | 540,000 | 690,000 | | | | | | 100 | - | - | - | 148,000 | 366,000 | 424,000 | 630,000 | 810,000 | | 06928200 | Laquey Branch near | 1.58 | 1959-70 | 2 | 142 | 190 | 200 | 210 | 240 | 255 | 270 | 360 | | | Hazelgreen. | | | 10 | 258 | 275 | 280 | 290 | 325 | 392 | 480 | 600 | | | | | | 25 | 350 | 360 | 370 | 375 | 420 | 504 | 600 | 720 | | 06928500 | Gasconade River near | 1,680 ^b | 1916-69 | 2 | - | - | - | 20,200 | 96,600 | 147,000 | 206,000 | 289,000 | | | Waynesville. | | | 10 | - | - | - | 89,800 | 215,000 | 314,000 | 426,000 | 574,000 | | | | | | 25 | - | - | - | 115,000 | 274,000 | 393,000 | 534,000 | 702,000 | | | | | | 50 | - | - | - | 134,000 | 348,000 | 504,000 | 645,000 | 840,000 | | | | | | 100 | - | - | - | 172,000 | 408,000 | 588,000 | 735,000 | 960,000 | | 06930000 | Big Piney River near
Big Piney. | 560 ^b | 1922-69 | 2
10
25
50
100 | : | : | : | 18,200
34,800
41,000
51,000
56,000 | 34,000
69,600
85,000
108,000
123,000 | 48,700
94,200
113,000
125,000
136,000 | 68,100
130,000
157,000
174,000
204,000 | 96,600
179,000
218,000
276,000
300,000 | |----------|--|--------------------|---------|----------------------------|------------------------------|------------------------------|------------------------------|--|---|---|--|---| | 06931500 | Little Beaver Creek
near Rolla. | 6.41 | 1948-70 | 2
10
25
50 | 325
750
1,100
1,440 | 370
840
1,200
1,750 | 380
870
1,360
1,800 | 400
930
1,400
1,900 | 500
1,060
1,750
2,000 | 630
1,400
1,900
2,300 | 840
1,740
2,300
2,700 | 1,200
2,280
3,240
3,900 | | 06932000 | Little Piney Creek
at Newburg. | 200 ^b | 1930-69 | 2
10
25
50
100 | : | - | : | 5,780
16,600
23,800
30,000
36,600 | 9,840
26,700
37,200
45,700
54,800 |
13,800
34,000
45,900
55,200
64,800 | 18,600
43,800
59,400
71,700
85,200 | 25,800
55,500
72,600
85,800
100,000 | | 06933500 | Gasconade River at Jerome. | 2,840 ^b | 1925-69 | 2
10
25
50
100 | : | : | : | 55,200
121,000
153,000
175,000
196,000 | 141,000
308,000
388,000
445,000
498,000 | 223,000
468,000
588,000
673,000
755,000 | | 444,000
888,000
1,110,000
1,270,000
1,430,000 | | 06934000 | Gasconade River near
Rich Fountain. | 3,180 ^b | 1923-59 | 2
10
25
50
100 | : | : | : | 55,000
123,000
157,000
183,000
208,000 | 148,000
317,000
398,000
455,000
508,000 | | | | | 06935500 | Loutre River at
Mineola. | 202 | 1949-69 | 2
10
25
50 | : | : | : | 7,360
15,400
18,700
20,800 | 11,200
22,600
26,800
32,400 | 14,000
27,000
35,000
39,200 | 18,000
32,700
43,500
51,000 | 25,800
45,600
50,400
59,400 | | 07011500 | Green Acre Branch
near Rolla. | 0.62 | 1948-69 | 2
10
25
50 | 50
70
90
130 | 55
80
95
155 | 60
90
100
160 | 70
95
110
170 | 80
100
120
180 | 90
112
154
196 | 100
150
210
270 | 120
180
240
300 | | 07012000 | Behmke Branch
near Rolla. | 1.05 | 1949-59 | 2
10
25 | 70
120
160 | 75
130
170 | 80
138
175 | 85
144
180 | 90
168
220 | 112
238
308 | 150
300
420 | 180
360
480 | | 07013000 | Meramec River near
Steelville. | 781 | 1923-69 | 2
10
25
50
100 | : | : | : | 23,200
49,600
61,800
70,400
78,400 | 43,900
95,400
121,000
162,000
192,000 | 59,400
130,000
169,000
200,000
231,000 | 78,900
172,000
226,000
270,000
318,000 | 106,000
213,000
277,000
327,000
380,000 | a/ Recurrence interval is the average interval of time within which a given event will be exceeded once. Recurrence intervals are averages and do not imply regularity of occurrence; an event of 50-year recurrence interval might be exceeded in consecutive years, for instance. In terms of probability, a 5-year flood volume has a 2-percent chance of occurring in any year. \underline{b} / Approximately. # FLOOD-VOLUME-DURATION RECURRENCE DATA (Continued). | | | Drainage | Record | Recurrence | F | lood volume | , in acr | e-feet, for | indicated | duration | , in days | | |----------|---------------------------|-----------------|------------------|-------------------------------|-------|-------------|----------|-------------|-----------|----------|-----------|-----------| | Station | Station name and location | area
(sq mi) | used in analysis | interval <u>a/</u>
(years) | 0.25 | 0.50 | 0.75 | 1 | 3 | 7 | 15 | 30 | | 07014500 | Meramec River near | 1,475 | 1923-33, | 2 | - | - | | 33,800 | 75,000 | 104,000 | 145,000 | 204,000 | | | Sullivan. | | 1945-69 | 10 | - | - | - | 71,400 | 166,000 | 225,000 | 312,000 | 415,000 | | | | | | 25 | - | - | - | 88,000 | 212,000 | 294,000 | 408,000 | 536,000 | | | | | | 50 | - | - | - | 108,000 | 245,000 | 346,000 | 486,000 | 630,000 | | | | | | 100 | - | - | - | 128,000 | 278,000 | 400,000 | 570,000 | 732,000 | | 07015000 | Bourbeuse River near | 21.3 | 1948-69 | 2 | 815 | 1,140 | 1,180 | 1,320 | 1,740 | 2,100 | 2,640 | 3,600 | | | St. James. | | | 10 | 1,860 | 2,530 | 2,970 | 3,320 | 3,930 | 5,040 | 6,240 | 7,800 | | | | | | 25 | 2,820 | 3,660 | 4,290 | 4,560 | 5,940 | 7,840 | 9,350 | 11,300 | | | | | | 50 | 3,340 | 4,550 | 5,400 | 5,900 | 7,500 | 11,200 | 14,000 | 14,600 | | 07015500 | Lanes Fork near | 0.225 | 1953-65 | 2 | 13 | 15 | 18 | 20 | 24 | 28 | 30 | 60 | | | Rolla. | | | 10 | 27 | 30 | 36 | 40 | 48 | 56 | 60 | 120 | | | | | | 25 | 38 | 40 | 45 | 48 | 64 | 90 | 110 | 130 | | 07016500 | Bourbeuse River at | 808 | 1922-69 | 2 | - | - | - | 22,800 | 54,500 | 77,000 | 101,000 | 137,000 | | | Union. | | | 10 | - | - | - | 42,000 | 104,000 | 144,000 | 191,000 | 274,000 | | | | | | 25 | | - | - | 52,400 | 128,000 | 178,000 | 236,000 | 348,000 | | | | | | 50 | - | - | - | 60,200 | 146,000 | 202,000 | 270,000 | 404,000 | | | | | | 100 | - | - | - | 68,000 | 164,000 | 225,000 | 303,000 | 460,000 | | 07017000 | Meramec River at | 2,670 | 1941-51 | 2 | - | - | - | 72,200 | 184,000 | 270,000 | 390,000 | 540,000 | | | Robertsville. | | | 10 | - | - | - | 150,000 | 363,000 | 512,000 | 663,000 | 894,000 | | | | | | 25 | - | - | - | 190,000 | 462,000 | 616,000 | 855,000 | 1,170,000 | | 07017500 | Dry Branch near | 3.35 | 1956-70 | 2 | 170 | 230 | 240 | 250 | 288 | 350 | 450 | 600 | | | Bonne Terre. | | | 10 | 260 | 350 | 420 | 470 | 576 | 700 | 840 | 1,080 | | | | | | 25 | 345 | 420 | 502 | 580 | 744 | 896 | 1,100 | 1,320 | | | | | | 50 | 405 | 470 | 555 | 620 | 876 | 1,040 | 1,300 | 1,440 | | 07018000 | Big River near | 718 | 1949-69 | 2 | - | - | - | 23,400 | 45,200 | 59,800 | 81,000 | 113,000 | | | DeSoto. | | | 10 | - | - | - | 49,600 | 95,400 | 119,000 | 153,000 | 211,000 | | | | | | 25 | - | - | - | 67,800 | 130,000 | 157,000 | 198,000 | 268,000 | | | | | | 50 | - | - | - | 84,000 | 162,000 | 188,000 | 237,000 | 313,000 | | 07018500 | Big River at | 917 | 1924-69 | 2 | - | - | - | 25,600 | 56,600 | 79,700 | 112,000 | 158,000 | | | Byrnesville. | | | 10 | - | - | - | 50,800 | 114,000 | 154,000 | 216,000 | 302,000 | | | | | | 25 | - | - | - | 64,400 | 144,000 | 193,000 | 269,000 | 374,000 | | | | | | 50 | 7. | - | - | 74,800 | 166,000 | 221,000 | 309,000 | 428,000 | | | | | | 100 | - | - | - | 85,400 | 188,000 | 249,000 | 351,000 | 481,000 | | 07019000 | Meramec River near | 3,788 | 1922-69 | 2 | - | - | - | 66,600 | 180,000 | 287,000 | 405,000 | 563,000 | | | Eureka. | | | 10 | - | - | - | 137,000 | 362,000 | 563,000 | | 1,090,000 | | | | | | 25 | - | - | - | 175,000 | 448,000 | 696,000 | | 1,370,000 | | | | | | 50 | - | - | - | 202,000 | 508,000 | | 1,110,000 | | | | | | | 100 | - | - | - | 230,000 | 563,000 | 879,000 | 1,240,000 | 1,780,000 | | 3 | _ | |---|----| | 7 | 0 | | 7 | 3 | | (| Œ. | | 1 | 3 | | č | 5. | | : | = | | 2 | × | | 07021000 | Castor River at Zalma. | 423 | 1922-69 | 2
10
25
50 | : | : | - | 17,500
39,600
51,800
61,200 | 38,900
84,000
106,000
123,000 | 55,200
112,000
139,000
158,000 | 75,000
152,000
190,000
217,000 | 105,000
205,000
253,000
288,000 | |----------|--------------------------------------|----------|------------------|----------------------------|----------------|----------------|----------------|--|--|---|---|---| | 07035500 | Barnes Creek near
Fredericktown. | 4.03 | 1956-70 | 100
2
10 | 275
780 | 300
840 | 330
900 | 70,800
350
920 | 139,000
510
1,000 | 176,000
616
1,190 | 720
1,440 | 960
1,680 | | | Fleder Textown. | | | 25
50 | 1,000
1,200 | 1,100
1,300 | 1,150
1,380 | 1,200
1,440 | 1,300
1,500 | 1,510
1,790 | 1,800
2,160 | 2,160
2,520 | | 07037500 | St. Francis River
near Patterson. | 956 | 1922-69 | 2
10
25
50
100 | : | - | : | 49,200
101,000
126,000
144,000
161,000 | 91,800
185,000
232,000
266,000
300,000 | 122,000
235,000
293,000
336,000
379,000 | 168,000
330,000
417,000
480,000
543,000 | 232,000
456,000
574,000
660,000
750,000 | | | | | | 100 | - | | 10 | 101,030 | 300,030 | 379,000 | 343,000 | 750,000 | | 07037700 | Clark Creek near
Piedmont. | 4.39 | 1957-70 | 2
10 | 210
430 | 300
600 | 330
720 | 400
840 | 540
1,080 | 672
1,320 | 840
1,560 | 1,080 | | | | | | 25 | 550 | 700 | 885 | 1,040 | 1,370 | 1,680 | 1,860 | 2,280 | | 07041000 | Little River ditch | 111 | 1927-69 | 2 | - | - | - | 3,500 | 9,200 | 15,700 | 22,400 | 31,700 | | | 81 near Kennett. | | | 10
25 | - | - | - | 4,500 | 16,400 | 33,600 | 54,000 | 75,000 | | | | | | 50 | - | - | - | 6,300
6,700 | 18,700
19,900 | 41,400 46,200 | 72,300
86,700 | 102,000 | | | | | | 100 | - | - | - | 7,000 | 20,800 | 47,600 | 102,000 | 148,000 | | 07042000 | Little River ditch 1 | 235 | 1927-69 | 2 | - | - | - | 8,700 | 23,100 | 40,700 | 57,300 | 79,200 | | | near Kennett. | | | 10 | - | 7 | - | 13,200 | 39,000 | 87,400 | 142,000 | 200,000 | | | | | | 25 | - | - | - | 16,000 | 47,100 | 106,000 | 189,000 | 271,000 | | | | | | 50 | - | - | - | 17,600 | 51,000 | 118,000 | 222,000 | 328,000 | | | | | | 100 | - | - | - | 18,600 | 55,200 | 129,000 | 256,000 | 385,000 | | 07042500 | Little River ditch 251 | 235 | 1946-69 | 2 | - | - | - | 4,860 | 13,000 | 23,100 | 33,000 | 49,200 | | | near Lilbourn. | | | 10 | - | - | - | 6,620 | 19,800 | 44,100 | 69,000 | 98,400 | | | | | | 25 | - | - | - | 7,400 | 21,900 | 50,400 | 87,600 | 122,000 | | | | | | 50 | - | - | - | 8,000 | 23,400 | 53,900 | 101,000 | 139,000 | | 07043000 | Castor River at | 175 | 1946-69 | 2 | - | - | - | 4,000 | 11,200 | 20,700 | 28,200 | 38,400 | | | Aquilla. | | | 10 | - | - | - | 7,320 | 20,000 | 38,500 | 60,000 | 76,800 | | | | | | 25 | - | - | - | 9,180 | 24,700 | 47,200 | 77,700 | 94,800 | | | | | | 50 | - | - | - | 10,600 | 28,200 | 53,600 | 91,200 | 108,000 | | 07043500 | Little River ditch 1 | 450 | 1946-69 | 2 | - | - | - | 10,700 | 28,000 | 48,600 | 68,400 | 96,000 | | | near Morehouse. | | | 10 | - | - | - | 15,000 | 43,500 | 90,400 | 146,000 | 194,000 | | | | | | 25 | - | - | - | 16,400 | 47,600 | 107,000 | 184,000 | 239,000 | | | | | | 50 | - | - | - | 17,600 | 49,700 | 112,000 | 212,000 | 271,000 | | 07044000 | Little River ditch 251 | 883 | 1927-69 | 2 | - | - | - | 9,760 | 27,600 | 54,000 | 84,000 | 125,000 | | | near Kennett | | | 10 | - | - | - | 14,500 | 42,100 | 90,400 |
155,000 | 229,000 | | | (includes Little River | | | 25 | - | - | - | 17,200 | 46,800 | 105,000 | 187,000 | 276,000 | | | ditch 66). | | | 50 | - | - | - | 18,400 | 49,500 | 114,000 | 210,000 | 309,000 | | | 20 20 20 | 77 13 Ar | 2000 000 000 000 | 100 | - | | - | 19,400 | 51,800 | 120,000 | 231,000 | 340,000 | a/ Recurrence interval is the average interval of time within which a given event will be exceeded once. Recurrence intervals are averages and do not imply regularity of occurrence; an event of 50-year recurrence interval might be exceeded in consecutive years, for instance. In terms of probability, a 50-year flood volume has a 2-percent chance of occurring in any year. # FLOOD-VOLUME-DURATION RECURRENCE DATA (Continued). | | | Drainage | Record | Recurrence | F | lood volume, | in acr | e-feet, for | indicated | duration, | in days | | |-------------------|---------------------------|-----------------|------------------|----------------------------|-------|--------------|--------|-------------|-----------|-----------|---------|---------| | Station
number | Station name and location | area
(sq mi) | used in analysis | interval <u>a/</u> (years) | 0.25 | 0.50 | 0.75 | 1 | 3 | 7 | 15 | 30 | | 07046000 | Little River ditch 259 | 89 | 1927-69 | 2 | - | - | - | 3,480 | 9,240 | 15,400 | 20,200 | 27,000 | | | near Kennett. | | | 10 | - | - | - | 5,680 | 16,600 | 33,500 | 46,800 | 59,400 | | | | | | 25 | - | - | - | 6,800 | 18,800 | 41,000 | 59,700 | 73,200 | | | | | | 50 | - | - | - | 7,600 | 20,000 | 45,800 | 68,400 | 82,200 | | | | | | 100 | - | - | - | 8,200 | 20,900 | 47,600 | 76,800 | 90,000 | | 07050700 | James River near | 246 | 1956-69 | 2 | - | - | - | 11,200 | 18,600 | 23,700 | 30,900 | 40,200 | | | Springfield. | | | 10 | - | - | - | 22,600 | 42,200 | 57,400 | 73,800 | 94,200 | | | | | | 25 | - | - | - | 29,000 | 58,800 | 78,900 | 102,000 | 131,000 | | 07052500 | James River at | 987 | 1923-69 | 2 | - | - | - | 27,600 | 56,600 | 86,500 | 123,000 | 175,000 | | | Galena. | | | 10 | - | - | - | 65,400 | 141,000 | 206,000 | 280,000 | 383,000 | | | | | | 25 | - | - | - | 87,000 | 194,000 | 280,000 | 381,000 | 504,000 | | | | | | 50 | - | - | - | 104,000 | 239,000 | 342,000 | 462,000 | 600,000 | | | | | | 100 | - | - | - | 121,000 | 286,000 | 409,000 | 552,000 | 702,000 | | 07057500 | North Fork River | 561 | 1945-69 | 2 | - | - | - | 13,600 | 27,600 | 42,300 | 62,700 | 94,800 | | | near Tecumseh. | | | 10 | - | - | - | 32,200 | 58,300 | 83,600 | 118,000 | 173,000 | | | | | | 25 | - | - | - | 43,000 | 75,000 | 105,000 | 145,000 | 217,000 | | | | | | 50 | - | - | - | 51,400 | 87,600 | 121,000 | 165,000 | 250,000 | | 07058000 | Bryant Creek near | 570 | 1945-69 | 2 | - | - | - | 14,900 | 28,900 | 42,000 | 57,300 | 84,000 | | | Tecumseh. | | | 10 | - | - | - | 33,400 | 61,200 | 88,800 | 120,000 | 175,000 | | | | | | 25 | - | - | - | 43,200 | 78,000 | 114,000 | 155,000 | 224,000 | | | | | | 50 | - | - | - | 50,600 | 90,000 | 133,000 | 181,000 | 262,000 | | 07061500 | Black River near | 484 | 1940-69 | 2 | - | - | - | 20,400 | 35,500 | 47,600 | 67,200 | 95,400 | | | Annapolis. | | | 10 | - | - | - | 44,600 | 73,200 | 94,900 | 132,000 | 180,000 | | | | | | 25 | - | - | - | 60,600 | 100,000 | 128,000 | 176,000 | 232,000 | | | | | | 50 | - | - | - | 74,200 | 125,000 | 158,000 | 215,000 | 275,000 | | 07064300 | Fudge Hollow | 1.72 | 1956-67 | 2 | 19 | 22 | 25 | 30 | 36 | 42 | 60 | 65 | | | near Licking. | | | 10 | 60 | 66 | 72 | 84 | 96 | 112 | 120 | 130 | | | | | | 25 | 128 | 132 | 140 | 142 | 144 | 148 | 150 | 180 | | 07064500 | Big Creek near | 8.36 | 1950-70 | 2 | 330 | 500 | 570 | 620 | 840 | 1,000 | 1,260 | 1,800 | | | Yukon. | | | 10 | 750 | 950 | 1,000 | 1,060 | 1,320 | 1,700 | 2,400 | 3,000 | | | | | | 25 | 1,050 | 1,200 | 1,250 | 1,300 | 1,700 | 2,200 | 2,880 | 3,600 | | | | | | 50 | 1,300 | 1,430 | 1,510 | 1,680 | 1,950 | 2,600 | 3,300 | 3,960 | | 07066000 | Jacks Fork at | 398 | 1923-69 | 2 | - | - | - | 13,300 | 24,600 | 34,900 | 50,400 | 71,400 | | | Eminence. | | | 10 | - | - | - | 31,400 | 55,000 | 75,500 | 109,000 | 140,000 | | | | | | 25 | - | - | - | 41,000 | 70,200 | 96,600 | 131,000 | 175,000 | | | | | | 50 | - | - | - | 48,200 | 81,600 | 112,000 | 151,000 | 202,000 | | | | | | 100 | - | - | - | 55,200 | 92,400 | 128,000 | 171,000 | 228,000 | | 07066500 | Current River near Eminence. | 1,272 | 1923-69 | 2
10
25
50
100 | : | : | : | 32,200
79,400
107,000
129,000
152,000 | 65,400
144,000
187,000
219,000
251,000 | 98,800
206,000
260,000
302,000
344,000 | 145,000
288,000
363,000
420,000
477,000 | 211,000
404,000
508,000
586,000
666,000 | |----------|---|-------|---------|----------------------------|--------------------------|--------------------------|----------------------------|--|--|---|---|--| | 07067000 | Current River at
Van Buren. | 1,667 | 1923-69 | 2
10
25
50
100 | - | : | - | 37,600
92,800
125,000
150,000
175,000 | 81,000
181,000
233,000
273,000
313,000 | 125,000
259,000
330,000
384,000
437,000 | 184,000
366,000
462,000
534,000
606,000 | 268,000
521,000
660,000
768,000
882,000 | | 07068000 | Current River at Doniphan. | 2,038 | 1923-69 | 2
10
25
50
100 | : | : | : | 42,200
101,000
135,000
162,000
189,000 | 98,400
219,000
283,000
332,000
380,000 | 155,000
323,000
413,000
482,000
550,000 | 235,000
459,000
579,000
669,000
762,000 | 352,000
660,000
834,000
966,000
1,100,000 | | 07070000 | Kings Creek near
Willow Springs. | 4.91 | 1955-67 | 2
10
25 | 90
270
405 | 135
325
470 | 165
345
510 | 184
380
560 | 190
432
600 | 196
476
700 | 240
540
840 | 245
660
960 | | 07070500 | Eleven Point River
near Thomasville. | 361 | 1951-69 | 2
10
25
50 | : | : | - | 5,700
13,500
20,000
25,000 | 9,960
21,400
31,800
39,000 | 12,800
26,000
37,800
44,800 | 15,000
31,500
44,400
52,500 | 20,100
42,000
56,400
64,800 | | 07071500 | Eleven Point River
near Bardley. | 793 | 1922-69 | 2
10
25
50
100 | : | : | - | 12,500
38,200
54,800
68,400
82,800 | 25,600
70,800
100,000
124,000
148,000 | 39,300
96,300
131,000
160,000
190,000 | 61,500
132,000
171,000
201,000
232,000 | 123,000
265,000
343,000
402,000
46 4, 000 | | 07185500 | Stahl Creek near
Miller. | 3.86 | 1951-70 | 2
10
25
50 | 192
395
550
640 | 240
540
710
880 | 255
645
870
1,100 | 284
740
1,010
1,250 | 384
924
1,380
1,800 | 490
1,160
1,750
2,240 | 660
1,440
2,040
2,640 | 840
1,680
2,520
3,240 | | 07185700 | Spring River at
Larussell. | 306 | 1957-69 | 2
10
25 | : | : | : | 4,060
13,000
22,200 | 8,700
25,600
40,800 | 14,600
38,800
56,000 | 23,100
53,700
72,600 | 32,700
72,600
97,200 | | 07186000 | Spring River near
Waco. | 1,164 | 1926-69 | 2
10
25
50
100 | : | : | - | 27,200
72,800
102,000
125,000
150,000 | 61,800
168,000
233,000
285,000
340,000 | 92,400
256,000
354,000
431,000
511,000 | 125,000
348,000
480,000
582,000
687,000 | 168,000
462,000
636,000
768,000
900,000 | | 07187000 | Shoal Creek
above Joplin. | 410 | 1942-69 | 2
10
25
50 | : | : | - | 10,200
35,600
56,000
75,200 | 19,800
70,200
115,000
158,000 | 29,000
100,000
162,000
224,000 | 40,200
129,000
206,000
281,000 | 57,000
171,000
265,000
355,000 | a/ Recurrence interval is the average interval of time within which a given event will be exceeded once. Recurrence intervals are averages and do not imply regularity of occurrence; an event of 50-year recurrence interval might be exceeded in consecutive years for instance. In terms of probability, a 50-year flood volume has a 2-percent chance of occurring in any year. # FLOOD-VOLUME-DURATION RECURRENCE DATA (Continued). | | | Drainage | Record | Recurrence | | Flood volume | e, in acr | e-feet, for | r indicate | d duration | , in days | | |----------|------------------------------|-----------------|------------------|--------------------------------|-----------------------|-----------------------|-----------------------|--|---|---|--|--| | Station | Station name and location | area
(sq mi) | used in analysis | interval <u>a</u> /
(years) | 0.25 | 0.50 | 0.75 | 1 | 3 | 7 | 15 | 30 | | 07188500 | Lost Creek at
Seneca. | 42 | 1949-59 | 2
10
25 | 320
2,250
5,300 | 450
3,180
6,250 | 495
3,780
7,500 | 570
4,120
8,200 | 1,170
5,400
10,500 | 1,960
8,370
14,100 | 3,000
11,200
17,800 | 4,200
15,900
24,600 | | 07189000 | Elk River near
Tiff City. | 872 | 1941-69 | 2
10
25
50 | | : | = | 26,600
81,800
123,000
161,000 | 54,500
153,000
225,000
289,000 | 81,100
216,000
312,000
399,000 | 108,000
281,000
411,000
534,000 | 149,000
364,000
522,000
666,000 | exceeded in consecutive years, for instance. In terms of probability, a 50-year flood volume has a 2-percent chance of occurring in any year. a/ Recurrence interval is the average interval of time within which a given event will be exceeded
once. Recurrence intervals are averages and do not imply regularity of occurrence; an event of 50-year recurrence interval might be